Is plaster casting necessary?

Megan Balsdon, MESc
PACS Symposium – April 5th, 2013
Montreal, QC
Outline

• Background
• Method
• Static and Dynamic analyses
• Limitations and Strengths
• Significance
• Future Directions
Kinematic Measurement Techniques

• Optical Tracking
 ▫ Treats foot as a rigid segment
Multi-segment Foot Model

• Jenkyn & Nicol, 2007
• Skin motion artefact error

(Jenkyn & Nicol, 2007)
Radiostereometric Analysis (RSA)

- Tantalum beads needed – invasive
- Embedded in bones during surgery

(Seslija 2009) (Kedgley, 2009b)
Markerless RSA

- 3D in-vivo kinematics
- Healthy (non-surgical) individuals

- Validated in 2009 by Anne-Marie Fox (Allen) for the Wolf Orthopaedic Quantitative Imaging Laboratory (WOQIL)
WOQIL Markerless RSA

- Two C-arm fluoroscopes
 - Static and dynamic capture settings
Calibration

- Calibration frame
 - (Kedgley, 2009b)

- Distortion grid
 - (Kedgley, 2009b)
Sample images

Calibration Frame Image

Distortion Grid Image
Experimental Set-up Recreation
Final Set-up
Final Step - Matching
Foot Anatomy

(Norden & Frankel, 2001)
Foot Motion

- Occurs in 3 anatomical planes
 - Extension/flexion in **sagittal** plane
 - Adduction/abduction in **transverse** plane
 - Inversion/eversion in **frontal** plane

(Hamill & Knutzen, 2003)
Medial Longitudinal Arch (MLA)

- Concave arch along medial aspect of foot
 - Head of the first metatarsal to calcaneal tuberosity
- Function
 - Shock absorption of vertical loads

(http://podiatryboards.web.officelive.com/footbones.aspx)
MLA Angle Measurement

- Based on Tome et al. (2006)
- Markerless RSA eliminates skin motion artefact
Orthotics

• Restrict and support medial column of foot
• Conservative treatment for musculoskeletal disorders

Pes planus (low arch) *Pes cavus* (high arch)
Study Purpose

• Compare medial longitudinal arch angle
 ▫ 3 foot types:
 • Normal
 • *Pes cavus* (high arch)
 • *Pes planus* (low arch)
 ▫ 4 different orthotics
 • Foam box & plaster casting
 • **Soft** (plastazote)
 • **Hard** (subortholen)
Hypotheses

- *Planus* participants show the largest BF angle
- Orthotics decrease the angle of all foot types
- No significant differences between casting methods
Methods - Static

- Participants stood on wooden platform
Methods - Dynamic

- 15 subjects (mean age 27.5)
 - 5 each foot type: normal, pes cavus, pes planus
- Dynamic gait along platform
Methods

- Neutral cushioning running shoes
 - New Balance Model 882
Methods

- Foam box & plaster casting methods
 - Soft (plastazote) & hard (subortholen) materials
Static - Barefoot *pes cavus*
Dynamic - Barefoot *pes planus*
Results (TO BE ADDED)
Results (TO BE COMPLETED)

- Discovered significantly longer vector MTMP/L for pes cavus (p<0.05)

<table>
<thead>
<tr>
<th></th>
<th>MTMH/L</th>
<th>SD</th>
<th>MTMP/L</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.389</td>
<td>0.012</td>
<td>0.445</td>
<td>0.080</td>
</tr>
<tr>
<td>Planus</td>
<td>0.382</td>
<td>0.020</td>
<td>0.451</td>
<td>0.035</td>
</tr>
<tr>
<td>Cavus</td>
<td>0.399</td>
<td>0.014</td>
<td>0.591</td>
<td>0.049</td>
</tr>
</tbody>
</table>
Discussion - Static (NOT COMPLETE)

- Largest mean angle – planus (hypothesized)
- Smallest mean angle – normal
 - Cavus foot structure:
 - Oversupinated, weight support on lateral side causing rearfoot inversion (Xiong et al., 2010)
Discussion - Dynamic (NOT COMPLETE)

- Pes planus group
 - Smallest angle – Foam hard orthotic
- Normal group
 - Mean increase for all devices
Summary

• Static comparison
 ▫ STN statistically significant

• Dynamic orthotics
 ▫ Largest decrease with foam casted hard orthotic
Limitations

• Small sample size per foot type

• Post-processing time is lengthy

• Somewhat invasive – radiation exposure

• Fluoroscope size and shape (9-inch and C-arm)
Strengths

• Tantalum beads not required (standard RSA)

• Dynamic data collection

• Markerless RSA eliminates skin motion artifact

• First reported study to look at skeletal kinematics of the medial longitudinal arch
Future Directions

• Improve manual matching procedure
 ▫ Edge detection algorithm

• Increase sample size
 ▫ Focus ONE foot type

• Investigate *pes cavus* foot structure
 ▫ NTMP length
Significance

• Provides \textit{in-vivo} investigation of skeletal kinematics of the foot
• Findings suggest there is more to understand about the MLA and the effect orthotics have
• STN showed significant difference
Acknowledgements

• Colin Dombroski
• Kristen Bushey
 ▫ Co-investigator
• Tom Jenkyn
 ▫ Supervisor
• Ian Jones
 ▫ WOBL Manager
• John Henry
 ▫ X-ray technician
References

Questions