Implications of Real-Time Biofeedback for Gait Retraining Individuals in a Clinical Setting

Adam Clanseya,b, PhD
Maclean Graydonc, MSc, BKin, CPed

aDepartment of Mechanical and Materials Engineering, Queen's University
bHuman Mobility Research Centre, Kingston General Hospital
cAlign Orthotic and Rehab
From the research lab to clinic
Biofeedback: Clinical applications

- Cerebral palsy (Colborne et al., 1994; Baram and Lenger)
- Stroke (Drużbicki et al., 2015; Kallaf et al., 2014; Del Din et al., 2014; Jonsdottir et al., 2007; Lewek et al., 2012)
- Knee osteoarthritis (Barrios et al., 2010; Hunt and Takcas 2014; Hunt et al., 2011; Shull et al., 2013; Wheeler et al., 2014)
- Amputees (Barton et al., 2014; Dingwell et al., 1996)
- Total knee replacement (Zeni et al., 2013)
- Hip replacement (White and Lifeso, 2005)
- Spinal cord injury (Dobkin et al., 2006)
- High injury risk/injured runners (Crowell el., 2011; Hunter et al., 2014; Noehren et al., 2011; Willy et al., 2015)
Initial step: Hardware

• Motion capture:
 – Active and passive markers
• EMG
• Force platforms
• IMU’s:
 – Accelerometers
 – Gyroscopes
 – Magnetometers
• Exoskeletons
• CAREN platform
Biofeedback for gait retraining

- Introduced 40 years ago as rehabilitation tool used for improving drop foot in stroke patients (Basmajian et al., 1975)

- Purpose:
 - Restore gait function
 - Reduce disease progression
 - Reduce injury risk
 - Improve performance
 - Perturb

Figure 1. (a) Pretraining gait. Note the genu valgum and hip adduction position. (b) Post-training gait. Note the reduced genu valgum and hip adduction.

(Davis, 2005)
The effect of real-time gait retraining on hip kinematics, pain and function in subjects with patellofemoral pain syndrome

B Noehren,¹ J Scholz,² I Davis²
Problem: Running injuries

- Patellofemoral pain syndrome (PFPS) and IT band syndrome are common injuries (Taunton et al., 2002; van der Worp et al., 2012)
- Greater hip adduction angle during stance associated with PFPS and IT band syndrome (Noehren et al., 2012; Noehren et al., 2007; Ferber et al., 2010; Wilson and Davis, 2008)
- Strengthening to improves symptoms but not gait mechanics (Willy and Davis 2011; Synder et al., 2008)

(Willy and Davis, 2011)
Gait retraining: Methodology

• Ten runners with PFPS:
 – Excessive hip adduction during stance
• Pre (Baseline), Post & 1-Month-Post assessments:
 – Single leg squat (skill transfer validation)
 – Pain scale (Lower Extremity function Index)
Gait retraining: Schedule

• 8 sessions over two weeks (4 per week)
• Run time gradually increased 15-30 min
• Faded feedback approach (Winstein & Schmidt, 1990)
 – Shift dependence from external to internal cues
 – Reinforce learning
 – Encourage internalization of new gait patterns
Gait retraining: Biofeedback

- Streamed hip adduction waveforms during stance:
 - Visual feedback modality (Visual 3D Real-time)
 - Instructed runner to stay within bandwidth target ±1 SD of norm

- Verbal cues (internal):
 - “Contract their gluteal muscles”
 - “Run with their knee pointing straight ahead”
Results

• 23% reduction in peak hip adduction
• Retained 1-month post training (20% reduction)
• 86% reduction in pain post training (11 points on LEFI scale)
• No hip improvements to the single leg squat
• 16% reduction of impact loading variables
• Gait-retraining was successful on improving hip mechanics, pain and function in runners with PFPS

• Gait modifications were retained 1-month post intervention
Gait retraining to reduce lower extremity loading in runners

Harrison Philip Crowell a,*, Irene S. Davis b,c

a US Army Research Laboratory—Human Research and Engineering Directorate, RDRL-HRS-B, Aberdeen Proving Ground, MD 21005-5425, USA
b Department of Physical Therapy, University of Delaware, Newark, DE, USA
c Drayer Physical Therapy Institute, Hummelstown, PA, USA
Problem: Tibial stress fracture

- Cited to be among the top 10 overuse injuries that runners and military recruits sustain (Taunton et al., 2002; Rauh et al., 2006)

- High impact loading variables associated with overuse injuries such as tibial stress fractures (Davis et al., 2004; Milner et al., 2006; Zadpoor et al., 2011)
Gait retraining: Methodology

- 10 runners with tibial acceleration > 8g (baseline)
- Noehren et al., 2011
Biofeedback

• Biofeedback:
 – Streamed tibial acceleration data on TV monitor
 – Horizontal line 50% below baseline

• Verbal cues:
 – “Run softer and make footfalls quieter”
Results

*Indicates significant difference from Pre-Training P ≤ 0.05
Results

*Indicates significant difference from Pre-Training P≤ 0.05
Discussion

• Gait retraining using real-time biofeedback can reduce impact loading

• Signs of retention with reduction in impact loading 1-month post gait retraining

• Greater reductions compared to other interventions such as cushioned shoes, foot orthoses and cushioned insoles (Butler et al., 2003; Milani et al., 1997; Mundermann et al., 2003; O’Leary et al., 2008)
Influence of Tibial Shock Feedback Training on Impact Loading and Running Economy

ADAM CHARLES CLANSEY¹, MICHAEL HANLON¹,², ERIC S. WALLACE¹, ALAN NEVILL³, and MARK J. LAKE⁴

¹Sport and Exercise Sciences Research Institute, University of Ulster, Newtownabbey, Co Antrim, NORTHERN IRELAND; ²Department of Health, Sport and Exercise Science, Waterford Institute of Technology, Waterford, IRELAND; ³School of Sport, Performing Arts and Leisure, University of Wolverhampton, Walsall, UNITED KINGDOM; and ⁴Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UNITED KINGDOM
Tibial acceleration: Method

- 22 runners with high tibial acceleration (> 9g)
 - Randomized: 12 retraining and 10 controls
- Pre, Post and 1-month post assessments:
 - Over ground running at a self selected speed
 - Metabolic cost measurements
HIGH SHOCK

MEDIUM SHOCK

ACCEPTABLE SHOCK

Shock (g) 4.12

Tibial Shock
Biofeedback training intervention

- Biofeedback training intervention
- Peak axial tibial acceleration (PTA)
- Auditory and visual feedback
Tibial acceleration

PTA (g)

Mean ± SD

*Pre to Post
**Pre to 1-Month Post
(P < 0.05)
Vertical loading rate

Mean ± SD

*Pre to Post (P < 0.05)
Overall findings

• Biofeedback training was shown to be successful on modifying gait patterns

• Signs of forgetting were apparent at 1-Month post gait retraining

• Small sample sizes
Knowledge translation
The new clinical experience

Orthotics

Exercise Rehab

Gait Re-training
• Orthotics with lateral wedging for medial knee OA can be complemented by foot progression angle re-training.
Orthotics with lateral wedging for medial knee OA can be complemented by hip angle re-training.

Partitioning of knee joint internal forces in gait is dictated by the knee adduction angle and not by the knee adduction moment.

M. Adouni, A. Shirazi-Adl

Division of Applied Mechanics, Department of Mechanical Engineering, École Polytechnique, P.O. Box 6079, Station “centre-ville”, Montréal, Québec, Canada H3C 3A7
• Orthotics with medial post for PFPS can be complemented by coaching runners to keep hips level when running.
Biofeedback in Pedorthics

• Orthotics to reduce eversion and internal rotation can be complemented by increased running cadence

Effects of Step Rate Manipulation on Joint Mechanics during Running

BRYAN C. HEIDERSCHEIT1,2, ELIZABETH S. CHUMANOV1, MAX P. MICHALSKI1, CHRISTA M. WILLE2, and MICHAEL B. RYAN1

1Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI; and 2Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI
Biofeedback in Pedorthics

• e.g. shock absorbing orthotics for MTSS or stress fractures can be complemented by changes in cadence when running, changing foot strike pattern.
Coaching + Research lab → Measurable biofeedback
Queen’s-C-Motion-Align collaboration
Queen’s-C-Motion-Align collaboration
Align’s clinical setting

Private clinic that primarily designs and manufactures custom fit orthotics:

- 3 certified Pedorthists
- 3 camera MoCap system
- Non-instrumented treadmill

![Image showing 3 cameras and a treadmill in a clinical setting.](image-url)
Clinic setting
Clinical setting: Gait retraining
Queen’s-C-Motion-Align collaboration
Queen’s-C-Motion-Align collaboration
Queen’s-C-Motion-Align collaboration
From research lab to clinic

• It can be done ✔

• Cost effective ✔

• Improvement in gait treatment/rehabilitation care?
Acknowledgments

HAS-Motion for helping with the software developments of the biofeedback clients

Kevin Deluzio and the Biomedical Engineering Research Group at Queen’s University

CREATE program and NSERC

Super subject!