Toward evidence-informed AFO prescription: Identifying factors that guide clinician decision-making

Kyra Kane
BScPT, MSc, PhD candidate
University of Saskatchewan
Senior Physical Therapist, Children’s Program
Regina Qu’Appelle Health Region
Outline

• AFO prescription decisions are based on limited evidence

• We are conducting 2 studies to improve our understanding of:
 1. Clinician experiences with AFO prescription
 ➢ Prescription evolves as part of a collaborative process
 ➢ Challenges and strengths of the current process
 2. How the angle of the ankle in the AFO affects walking in children with CP
Cerebral palsy

- Injury to the developing brain
- Impaired movement and posture
 - Varied impairments (e.g., spasticity, weakness, contracture, deformity) and gait patterns
- ~50% wear AFOs (Wingstrand, 2014)
Ankle-foot orthoses (AFOs)

• Apply forces to prevent unwanted movement
 • Control motion, compensate for weakness or abnormal distal motor control

• Control position of ground reaction force relative to lower extremity joints
 • By altering moments, AFOs affect muscle activity and movement

(e.g., Butler & Nene, 1991; Owen, 2005; Meadows et al., 2008)
Not all AFO prescriptions are created equal

- AFOs can improve gait quality
 (Bowers & Ross, 2009; Figueiredo et al., 2008; Morris, 2002a; Owen, 2010)
- Effect may not be optimal
 - Current AFO maximized gait quality only 37% of the time
 (Ries et al., 2014)
- Reasons behind this are not understood
 - Matching AFO design to child’s impairments/ gait pattern is important
 (Davids, 2007)
 - Lack of evidence to guide clinical decisions
 (Morris, 2002b; Ries et al., 2014, 2015)
AFO prescription
Clinician experiences and considerations
Purpose

• To explore clinician perspectives & experiences with AFO prescription for children with CP
 • Learn about *factors that influence AFO prescription* for children with CP in Canada
 • Gain insight into *potential ways to improve the process* and outcomes for children who wear AFOs
Methods

• Focus groups conducted at 5 rehabilitation facilities in 4 provinces
• 32 clinicians who work with children who have CP
 • 4 MDs, 10 orthotists, 17 PTs, 1 kinesiologist
Semi-structured interviews

• Purpose and types of AFOs
• Process to obtain AFO
• Roles of team members
• Clinical evaluation
• Facility processes:
 • What works well?
 • What could be changed?
 • Ideal process?
Analysis - Interpretive Description

• An approach to qualitative inquiry into health-related experiences (Thorne et al., 1997, 2004)
 • Captures themes & patterns within subjective perceptions
 • Goes beyond description, to explore meanings & explanations of experiences
 • Generates an interpretive description that can inform clinical knowledge

• 3 researchers participated in coding to establish categories and themes
Results

• Categories:
 • Processes to obtain and monitor AFO
 • Information that affects choice of AFO design
 • Factors that challenge or strengthen treatment outcomes

• Theme:
 • Prescription as a collaborative, iterative, and individualized process
Simplified process to obtain & monitor AFO

- **Prescriber** writes requisition
- **Orthotist** casts for AFO
- **Orthotist** fits AFO
- **Physical Therapy** follow-up

Waitlist

Revisit prescription if a team member decides goals are not being met

Orthotist follow-up (fit issues)

Ongoing evaluation, communication, adjustments to AFO (orthotist & PT, sometimes MD)
Factors that challenge or strengthen outcomes

<table>
<thead>
<tr>
<th>Category</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>System issues</td>
<td>• Waitlist</td>
</tr>
<tr>
<td></td>
<td>• Staffing budget</td>
</tr>
<tr>
<td>Team</td>
<td>• Proximity to other team members</td>
</tr>
<tr>
<td>Equipment</td>
<td>• Competing priorities</td>
</tr>
<tr>
<td></td>
<td>• 1 design may not achieve all goals</td>
</tr>
<tr>
<td>Parent/child</td>
<td>• Compliance, acceptance of AFO</td>
</tr>
</tbody>
</table>
Potential significance

• A comprehensive understanding of the factors influencing the process may benefit clinical practice
 • Identifying these factors may be a first step toward the development of guidelines to help clinicians improve AFO prescription for children with CP
Angle of the ankle in the AFO (AA-AFO)

Effect on walking mechanics in children with CP
Does the AA-AFO impact walking?

- AFOs are typically fabricated with the ankle at 90°

 - **Erroneous belief** that at midstance the shank is vertical and the ankle is 90°

 - **Unfounded assumption** that this position is necessary to maintain ankle plantarflexor muscle flexibility

- This practice may be problematic for children with tight/stiff gastrocnemius (GN) muscles (e.g., CP)

(Owen, 2010, 2014; Meadows et al., 2008; Morris et al., 2011; Nuzzo, 1983, 1986)
Consequences of inappropriate AA-AFO

- Bracing the ankle in a position that demands too much length from GN may cause
 - Foot damage (midfoot break, skin lesions)
 - Knee flexion during gait
 - Contractures

(Owen, 2014; Karas, 2002)
Positioning the ankle in plantarflexion will cause loss of muscle length... Myth?

- Accommodate GN tone/stiffness to treat it (Owen, 2010)
 - Positioning the ankle in plantarflexion may allow the GN to function more effectively and may increase muscle length

- Fears may not be warranted
 - AFOs have not been proven to prevent deformity or contractures (Morris et al., 2011)
 - GN contracture may be easier to correct than a rocker bottom foot or knee flexion contracture
Purpose and hypothesis

• Purpose: Examine effects of individualized AA-AFO
• AA-AFO based on clinical measures of calf muscle state (as described by Owen, 2005, 2010) will result in more normal
 • Joint motion
 • Muscle excursion
 • Muscle activation
 • Functional performance
1. Available muscle length?
2. How stiff is the muscle?
3. Any bony alignment issues?
4. Risk of losing muscle length?

Owen (2005, 2010)
Methodology

• Participants: children with CP, GN tightness, wear AFOs

• Compare 3 walking conditions:
 1. Shoes only
 2. Child’s usual AFO (tuned)
 3. Solid AFO with individualized AA-AFO (tuned)

• Biomechanical measures:
 • 3D gait analysis
 • Surface EMG
 • Computerized muscle length modelling

• Functional measures
 • Pediatric Balance Scale
 • 10-meter walk test

(Owen, 2004)
Results: Shank to vertical angle (right leg)

- Shoes: 24°
- Usual AFO (Hinged AFO): 22°
- Solid AFO with individualized AA (20° PF): 12°
Right knee flexion/extension

Phase of Gait Cycle

- Stance
- Swing

Degrees

Flexible AFO

Shoes

Usual AFO

Solid AFO (20° AA)
Right ankle dorsiflexion/plantarflexion

Phase of Gait Cycle

-30 -25 -20 -15 -10 -5 0 5 10 15

Shoes
Usual AFO
Solid AFO (20° AA)

Stance Swing
Potential significance

• Inform best practice by indicating how the AA-AFO can affect mobility
• Reduce costly trial-and-error decision-making in the AFO prescription process
• Improve mobility outcomes for children
Take away points

• Limited understanding of how AFOs are prescribed
• Successful AFO prescription requires teamwork –
 • Child, family, orthotist, PT, MD at all stages (assessment, goal setting, prescription, fitting, tuning, follow-up...)
 • Allows the prescription to evolve
• One research priority is to understand the effects of aspects of the prescription such as the AA-AFO
Acknowledgements

Advisors, collaborators, & consultant:

Kristin Musselman, PT, PhD
Joel Lanovaz, PhD
Patricia Manns, PT, PhD
Elaine Owen, MBE, MSc, SRP, MCSP

Thank you to the children and clinicians who have participated!
References and further reading

- Owen, E. (2014). Pediatric gait analysis and orthotic management with AFO footwear combinations: A segmental kinematic approach to rehabilitation; Course notes.
Information that affects AFO design

- Physical exam (MD, often PT)
- Frequent prescribers (ortho. surgeon, physiatrist)
- Other prescribers (pediatrician, neurologist...)
- Knowledge of types of AFOs
- Purpose of AFOs
- Parent/guardian
- Child
- Goals of stakeholders
- PT’s input & knowledge of child
- orthotist input (?)
- MD expertise & comfort affect amount of input
- Goals
 - Type
 - Ankle ROM (?)
Factors that challenge or strengthen outcomes

- Space & technology
 - Competing priorities & potential negative effects of AFO
 - Lack of evidence
 - Availability of orthoses for trial

- Professional education
 - Community & school PTs
 - Relative proximity of team members

- Equipment

- Team

- System
 - Waitlist
 - Funding for orthotic devices
 - Budget for staffing

- Parent/child
 - Growth
 - Footwear
 - Discomfort due to AFO
 - Compliance & acceptance of AFO

- Choice of provider
- Family context
- Language barrier